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Abstract
We consider the 2D super Liouville gravity coupled to the minimal
superconformal theory. We analyze the physical states in the theory and give
the general form of the n-point correlation numbers on the sphere in terms
of integrals over the moduli space. The three-point correlation numbers are
presented explicitly. For the four-point correlators, we show that the integral
over the moduli space reduces to the boundary terms if one of the fields is
degenerate. It turns out that special logarithmic fields are relevant for evaluating
these boundary terms. We discuss the construction of these fields and study
their operator product expansions. This analysis allows evaluating the four-
point correlation numbers. The derivation is analogous to that in the bosonic
case and is based on the recently derived higher equations of motion of the
super Liouville field theory.

PACS numbers: 04.60.−m, 11.25.Hf, 11.30.Pb

1. Introduction

Super Liouville gravity (SLG) [1] is the two-dimensional quantum gravity whose action
is induced by super conformal matter. This induced action is universal (i.e., its form is
independent of the concrete choice of the conformal matter) and is known as the super
Liouville action. In the framework of the David and Distler–Kawai approach (DDK) [2, 3],
SLG is presented as a tensor product of a matter theory (SCFT), super Liouville (SLFT) system
and super ghost (SG) system. The SG system also has super conformal symmetry and appears
as a result of the gauge-fixing problem in SLG (see, e.g., [4] for details). Schematically, the
SLG action is

ASLG = ASCFT + ASL + ASG. (1)
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All three theories constituting SLG are completely solvable by the standard bootstrap technique
[5] (at least in principle) because of the infinite symmetry given by the superconformal algebra,

[Ln,Lm] = (n − m)Ln+m +
c

8
(n3 − n)δn;−m,

{Gr,Gs} = 2Lr+s +
c

2

(
r2 − 1

4

)
δr;−s ,

[Ln,Gr ] =
(

1

2
n − r

)
Gn+r ,

(2)

where c is the central charge parameter, and the indices r and s are integers for the Ramond
(R) sector and half-integers for the Neveu–Schwarz (NS) sector. We restrict ourselves to
considering only the NS sector here. Whenever it cannot cause confusion, we omit sector
indices for the superconformal generators (i.e., indices indicating which sector—Liouville,
matter or ghost—is under consideration).

The interaction between the three components of SLG in the DDK approach is via the
relation for the central charge parameters

cSCFT + cSL + cSG = 0 (3)

and also due to the construction of the physical fields and the integration over the moduli space
in constructing the correlation numbers (see below).

This paper is organized as follows. In the following three sections, we briefly recall
some relevant aspects concerning all three ingredients of SLG. Section 5 is devoted to the
preliminary analysis of the physical states in SLG. We use the material in the preceding
sections to construct the basic types of the physical fields in the standard framework of BRST
quantization. We also introduce the special discrete series of physical states, known as ‘ground
ring elements’, and discuss the relation between the logarithmic counterparts of the ground ring
elements and the basic physical fields. This is our first main result. In the following section,
we discuss the operator products of the ground ring elements with the basic physical fields. In
section 7, we derive the general form of the n-point correlation number on the sphere in SLG.
This expression contains the integration over the moduli space. The simplest case of three
points, when the moduli space is trivial, is given explicitly. For the four-point correlators,
we show that in special cases the integration over moduli reduces to the boundary terms,
which are defined by the operator product expansions (OPEs) of the ‘logarithmic’ fields. In
section 8, we calculate all necessary operator products explicitly and evaluate the boundary
terms. Finally, this consideration leads to an explicit expression for the four-point correlation
number of one degenerate and three generic fields, which is presented in section 9. This
is our second main result. Some calculations omitted in the main text are presented in the
appendices.

2. Super Liouville field theory

The super Liouville field theory is a super conformal field theory with the central charge

c = 1 + 2Q2, (4)

where the ‘background charge’ Q is parametrized in terms of the basic ‘quantum’ parameter b
as Q = b−1 + b. The classical (as well as the quantum) SLFT has been introduced and studied
in [6–9] shortly after it appeared in the string context in [1]. Below, we present the main facts
concerning the NS sector of SLFT (see [10–13] and the references therein for more details
and recent developments). The NS fields belong to the highest-weight representations of the
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superconformal algebra. The basic fields are the scalar primary fields Va(x) corresponding to
the highest-weight vectors:

LnVa = 0, L̄nVa = 0, for n > 0,

GkVa = 0, ḠkVa = 0, for k > 0,

L0Va = L̄0Va = �aVa,

(5)

where

�a = a(Q − a)

2
(6)

and a is a (complex) continuous parameter. We also use another parameter λ = Q/2 −a. The
representations are singular at certain special values of the parameters. This happens [14] at
λ = λm,n, where (m, n) is a pair of positive integers (m − n ∈ 2Z) and

λm,n = mb−1 + nb

2
. (7)

In general, at a = am,n, one singular vector appears at the level mn/2 in the Verma module over
Vam,n

= Vm,n. For each pair (m, n), it is convenient to introduce a ‘singular-vector creation
operator’ Dm,n, which is a graded polynomial in G−k and L−k of level mn/2 whose coefficients
are functions of the central charge parameter b2 such that the singular vector appears when
Dm,n is applied to Vm,n. The normalization is unambiguously fixed via the coefficient of the
highest-order term: Dm,n = Gmn

−1/2 + · · ·. The basic OPE is

Va1(x)Va2(0) =
∫

dP

4π
(xx̄)�−�1−�2

(
C

Q/2+iP
a1,a2

[VQ/2+iP (0)]ee + C̃
Q/2+iP

a1,a2
[VQ/2+iP (0)]oo

)
(8)

(for brevity here and hereafter, we set � = �Q/2+iP and �i = �ai
). This OPE is continuous

and involves integration over the ‘momentum’ P. In (8), [Vp] denotes the contribution of the
primary field Vp and its superconformal descendants to the OPE (subscript ee stands for the
descendants on the integer level and oo for the descendants on the half-integer level). All
other OPEs of two arbitrary local fields can be derived from (8). The basic structure constants,
C

Q/2+iP
a1a2 and C̃

Q/2+iP

a1,a2
, in (8) were evaluated using the bootstrap technique in [15–17] and have

the explicit form (here a denotes a1 + a2 + a3)

C
Q−a3
a1a2

=
(

πμγ

(
Qb

2

)
b1−b2

)(Q−a)/b
ϒR(b)ϒNS(2a1)ϒNS(2a2)ϒNS(2a3)

2ϒNS(a − Q)ϒNS(a1+2−3)ϒNS(a2+3−1)ϒNS(a3+1−2)
,

C̃
Q−a3

a1a2
= −

(
πμγ

(
Qb

2

)
b1−b2

)(Q−a)/b iϒR(b)ϒNS(2a1)ϒNS(2a2)ϒNS(2a3)

ϒR(a − Q)ϒR(a1+2−3)ϒR(a2+3−1)ϒR(a3+1−2)
,

(9)

where we use the convenient notation in [17] for the special functions

ϒNS(x) = ϒb

(x

2

)
ϒb

(
x + Q

2

)
,

ϒR(x) = ϒb

(
x + b

2

)
ϒb

(
x + b−1

2

)
,

(10)

expressed in terms of the ‘upsilon’ function ϒb, which is standard in the Liouville field theory
(see [18, 19]). Structure constants (9) correspond to the normalization of the primary fields

〈VaVQ−a〉SLFT = (xx̄)−2�a . (11)
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An important result concerning SLFT is the higher equations of motion. Following [20], we
define the set of ‘logarithmic degenerate fields’ in the NS sector:

V ′
m,n = V ′

a|a=am,n
, m − n ∈ 2Z, (12)

where the general logarithmic fields V ′
a = ∂Va/∂a are the derivatives with respect to a of the

corresponding primary fields. It turns out that while V ′
m,n are logarithmic fields (as well as

general V ′
a), the fields,

D̄m,nDm,nV
′
m,n, (13)

have the properties of primary fields and should be identified with the exponential primary
fields Vm,−n. More precisely, we have the relations,

D̄m,nDm,nV
′
m,n = Bm,nVm,−n, (14)

known as the higher equations of motion. Here, the exponential primaries Vm,−n have the
dimensions �m,n + mn/2 and the coefficients

Bm,n = 2mnimn−2[mn/2]bn−m+1[πμγ (bQ/2)]nγ

(
m − nb2

2

)∏
(k,l)∈〈m,n〉NS

λk,l, (15)

where the set 〈m, n〉NS is the set of integer pairs:

{(k, l) ∈ {k | 1 − m � k � m − 1}, {l | 1 − n � l � n − 1}|k − l ∈ 2Z}\{(0, 0)}. (16)

3. Generalized super minimal models

We consider the special type of SLG where the so-called generalized super minimal models
(GSMM) are in the matter sector of the theory. We call the corresponding induced Liouville
gravity the minimal super Liouville gravity. In the GSMM, there are no special restrictions
on the central charge, which can take an arbitrary value in principle, in contrast to the case of
ordinary minimal models. It is instructive to parametrize the central charge via the same basic
parameter b as for SLFT,

c = 1 − 2(b−1 − b)2. (17)

In this parametrization, condition (3) for the total central charge is satisfied automatically. The
‘canonical’ super minimal models appear for the special choice of the parameter b such that b2

is a rational number. Otherwise, the algebra of the degenerate primary fields no longer closes
within any finite subset; instead, the whole set {	m,n} with any pair (m, n) of natural numbers
forms a closed algebra. Moreover, we enlarge the space of local fields by including local
fields with dimensions different from the Kac values. Hence, the spectrum of dimensions is
continuous in GSMM. We introduce the continuous parameter α to parametrize a continuous
family {	α} of primary fields with the dimensions

�(M)
α = α(α − q)

2
, (18)

where

q = b−1 − b. (19)

We also always use the ‘canonical’ CFT normalization of the primary fields 	α via the
two-point functions:

〈	α	α〉GSMM = (xx̄)−2�α . (20)
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The degenerate fields 	m,n have the dimensions

�(M)
m,n = −q2/8 + λ2

m,−n/2. (21)

They correspond to either α = αm,n or α = q − αm,n with

αm,n = q/2 + λ−m,n. (22)

It can be seen that the construction of GSMM is formally similar to that of SLFT and differs
by the change b → ib and α → −ia, and also by the normalization conditions for the primary
fields, equation (11) for SLFT and equation (20) for GSMM.

4. Super ghosts

In this section, we collect some results concerning SG (see, e.g., [21–23] for details). The
SGs appear as a result of gauge fixing in the Polyakov approach to SLG and are described by
the free super conformal field theory with the central charge cSG = −10.

The fermionic part of the SG system involves two anticommuting fields (b, c) of spins
(2,−1) with the action

Abc = 1

2π

∫
d2z(b∂̄c + b̄∂c̄). (23)

The operator products are readily found, with appropriate attention to the order of the
anticommuting variables,

b(z)c(0) ∼ 1

z
, b(z)b(0) ∼ O(z), c(z)c(0) ∼ O(z). (24)

As usual we focus on the holomorphic part. The fields have the Laurent expansions,

b(z) =
∞∑

m=−∞

bm

zm+2
, c(z) =

∞∑
m=−∞

cm

zm−1
, (25)

which yield the anticommutators

{bm, cn} = δm+n,0, {bm, bn} = 0, {cm, cn} = 0. (26)

There are two natural ground states; both are annihilated by bm and cm for m > 0. In addition,
the first one is annihilated by b0, and the second one is annihilated by c0. For future purposes,
we choose the vacuum annihilated by b0:

bm|v〉bc = 0, m � 0,

cm|v〉bc = 0, m � 1.
(27)

It can be verified that the vacuum |v〉bc corresponds to the field c(x) with the dimension −1.
The unit operator, which is relevant later, corresponds to the state

|1〉bc = b−1|v〉bc. (28)

All other representations of (26) are equivalent to that described above.
The bosonic part of the SG involves two bosonic fields (β, γ ) of spins (3/2,−1/2) that

are superpartners of the respective fermionic ghosts (b, c). The action has the form

Aβγ = 1

2π

∫
d2z(β∂̄γ + β̄∂γ̄ ). (29)

Because the statistics changes, some signs in the operator products change:

β(z)γ (0) ∼ −1

z
, γ (z)β(0) ∼ 1

z
, β(z)β(0) ∼ O(1), γ (z)γ (0) ∼ O(1).

(30)
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The Hilbert space of the (β, γ )-system is constructed by expanding

β(z) =
∞∑

m=−∞

βm

zm+3/2
, γ (z) =

∞∑
m=−∞

γm

zm−1/2
, (31)

where index m is integer for the R sector and half-integer for the NS sector, and the coefficients
satisfy the canonical commutation relations

[γm, βn] = δm+n,0, [βm, βn] = 0, [γm, γn] = 0. (32)

The state-operator map is now trickier. In contrast to the fermionic case, there now exist
discreet series of vacuums {|q〉βγ } with q either integer or half-integer,

βm|q〉βγ = 0, m � −q − 1/2,

γm|q〉βγ = 0, m � q + 3/2.
(33)

Each q-vacuum defines an inequivalent representation of (32), sometimes called a ‘picture.’
States in the Hilbert space are in one-to-one correspondence with local field operators, and the
complete space of local fields is therefore the direct sum of all highest-weight representations
with the highest vectors |q〉βγ . We define the two local operators that are most important
for the subsequent developments. It can be verified that the vacuum |q = 0〉βγ has the
dimension 0 and corresponds to the unit operator. The local operator corresponding to
the vacuum |q = −1〉βγ is particularly useful. It turns out that this vacuum corresponds to the
formal operator δ(γ (0)) of dimension 1/2. Indeed, taking the general properties of the Dirac
δ-function and OPE (32) (see appendix A) into account, we can straightforwardly derive the
operator product relations:

γ (z)δ(γ (0)) ∼ z∂γ (0)δ(γ (0)), β(z)δ(γ (0)) ∼ −1

z
δ(γ (0)), (34)

and similar equations with β and γ interchanged. Using these expansions we can easily verify
that δ(γ (0)) satisfies (33) for q = −1.

The anomaly in the conservation of the ghost currents J bc(u) = −:b(u)c(u): and
J βγ (u) = −:β(u)γ (u): leads to the important requirement for the correlation functions.
In particular, on the sphere, any correlation function in SLG including ghost observables built
of β, γ, δ(β(0)), δ(γ (0)), and their descendants should satisfy the ghost-number balance:

Nc − Nb = 3

(Nδ(γ ) − Nδ(β)) + (Nβ − Nγ ) = 2.
(35)

Although this relation is known (see, e.g., [21]), we rederive this result in appendix A. Finally,
the superconformal generators in the ghost sector are

Lg
m =

∑
n

(m + n):bm−ncn: +
∑

k

(
m

2
+ k

)
:βm−kγk: − 1

2
δm,0,

G
g

k = −
∑

n

[(
k +

n

2

)
βk−ncn + 2bnγk−n

]
,

(36)

where the normal ordering is defined with respect to the ground states |v〉bc and |q = −1〉βγ .
In the practical calculations, the computation relations of the ghost generators to the
superconformal generator Ln,

6
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[Ln, bm] = (n − m)bn+m,

[Ln, cm] = −(2n + m)cn+m,

[Ln, βk] =
(

n

2
− k

)
βn+k,

[Ln, γk] = −
(

3n

2
+ k

)
γn+k,

(37)

and to the generator Gk ,

[Gk, bn] =
(

n

2
− k

)
βk+n,

[Gk, cn] = −2γk+n,

[Gk, βr ] = −2bk+r ,

[Gk, γr ] =
(

3k

2
+

r

2

)
ck+r ,

(38)

are relevant. In the following section, we use the facts described above to construct the basic
physical states in SLG.

5. Physical states in SLG

The vanishing of the total central charge (3) is not sufficient to ensure the Weyl invariance
of SLG. Inserting the physical fields in the functional integral should also not spoil Weyl
invariance. This leads to a certain restriction on the structure of the physical fields. The
standard mathematical tool for treating such problems is cohomology theory. The physical
fields form a space of cohomology classes with respect to the nilpotent BRST charge Q. In
modes, the Q-operator can be derived via the commutation relations

{bn,Q} = Ln, [βr,Q] = Gr. (39)

Here and below Ln and Gr are the total superconformal generators, defined by the sum of the
corresponding generators in all three sectors (matter, Liouville and ghost):

Ln = LM
n + LL

n + Lg
n, Gr = GM

r + GL
r + Gg

r . (40)

We will also use the notation LM+L
n = LM

n + LL
n and GM+L

r = GM
r + GL

r . The commutation
relations (39) lead to the expansion of the BRST operator:

Q =
∑
m

:

[
LM+L

m +
1

2
Lg

m

]
c−m: +

∑
r

:

[
GM+L

r +
1

2
Gg

r

]
γ−r : − 1

4
c0, (41)

where m ranges the integers, r ranges the half-integers, and the normal ordering is the same
as in equation (36). From this, we can verify the nilpotence whenever the total central charge
vanishes. The observable spectrum consists of the BRST invariant local fields,

Q|�〉 = 0, (42)

which do not belong to Im Q. Because of (39), the total dimension of any nontrivial physical
state is zero. Besides the local fields, for the construction of the physical amplitudes in SLG
we introduce also non-local physical fields of the form∫

b̄−1b−1�(z, z̄) d2z, (43)

7
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where �(z, z̄) satisfies (42). The gauge invariance of these fields follows directly from (39).
We do not completely classify the physical states in SLG for all different pictures here. Our
aim here is to bring sufficient information into consideration to construct a gravitational n-
point correlation number for some special choice of the pictures. As was mentioned above, the
ghost number balance (35) should be satisfied on the sphere. This condition can be fulfilled
by choosing the fields in such a way that three of them have the ghost factors c and c̄, and two
fields have the factors δ(γ ) and δ(γ̄ ). In particular, it means that two of the fields belong to
the picture q = −1 and others belong to the picture q = 0. We therefore concentrate on the
physical states of this kind in what follows. Apparently, the general case is obtained from this
special one by applying the picture changing operator [21].

It is natural to start our search of the physical states among those constructed from the
primary fields in all the three sectors. We call them the ‘basic’ physical states. We introduce
the special notation for the vacuum vector in the tensor product of the matter and Liouville
sectors:

|Ua〉 = |	a−b〉|Va〉. (44)

The vector Ua corresponds to the field of total dimension (1/2, 1/2). We also define the
ground state related to the given picture q:

|a〉q = |Ua〉|v〉bc|q〉βγ . (45)

It can be verified that

|Wa〉 = |a〉−1 (46)

satisfies (42). Hence, the physical fields of the first type are

Wa(z, z̄) = Ua(z, z̄) · c(z)c̄(z̄) · δ(γ (z))δ(γ̄ (z̄)). (47)

Similarly, it can be verified that another type of physical state can be defined in the q = 0
picture:

|W̃a〉 =
(

ḠM+L
−1/2 +

1

2
Ḡ

g
−1/2

)(
GM+L

−1/2 +
1

2
G

g
−1/2

)
|a〉0. (48)

In the field language,

W̃a(z, z̄) =
(

ḠM+L
−1/2 +

1

2
Ḡ

g
−1/2

)(
GM+L

−1/2 +
1

2
G

g
−1/2

)
Ua(z, z̄) · c̄(z̄)c(z). (49)

To give an idea of the explicit calculations, we prove that W̃a represents a cohomology class
in appendix B.

The integral version of the physical state (43), corresponding to �(z, z̄) = W̃a(z, z̄), is∫
Ḡ−1/2G−1/2Ua(z, z̄) d2z. (50)

An additional ‘discrete’ physical state arises when the representation in the matter sector
is degenerate. The importance of the discrete states [24, 25], for calculating the correlators
in the bosonic LG was recently shown in [29]. It is natural to assume a similar effect in the
supersymmetric extension of LG. We start by describing the construction for the discrete states
in SLG. The degenerate matter fields 	m,n, when combined with the degenerate exponentials
Vm,n of the corresponding SLFT, yield nontrivial BRST-invariant operators of ghost number
zero:

Om,n(z, z̄) = H̄m,nHm,n	m,n(z, z̄)Vm,n(z, z̄). (51)

The operators Hm,n are composed of the super Virasoro generators of the level (mn − 1)/2 in
the matter and Liouville sectors and also of ghost fields. The condition that the field Om,n is

8
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closed but nontrivial, i.e., represents a cohomology class, defines the operator Hm,n uniquely
modulo exact terms. There is an important relation between the discrete states and the physical
operators discussed above. We introduce the operator

Jm,n(z) = (
GM+L

−1/2 − 1
2G

g
−1/2

)
DL

m,nc(z), (52)

where the action of this operator is simply defined by the left multiplication. Below we omit
the dependence on z and z̄. Then the basic relation,

Q̄QOm,n = J̄ m,nJm,n	m,nVm,n, (53)

holds, where we temporarily assume that the singular vector in the Liouville sector is not
decoupled. In appendix C, we prove this relation and also use it to derive the important
statement,

Q̄QO ′
m,n = Bm,nW̃m,−n, (54)

where we introduce the logarithmic counterparts of the discrete states Om,n,

O ′
m,n = H̄m,nHm,n	m,nV

′
m,n, (55)

and Bm,n is just the coefficients in the higher equations of motion of SLFT (14). We note that
in the space of states enlarged by the logarithmic fields, the field W̃m,n becomes trivial4.

Another useful consequence of (54) can be obtained by applying b̄−1b−1:

Ḡ−1/2G−1/2Um,−n = B−1
m,n(∂̄ − Q̄b̄−1)(∂ − Qb−1)O

′
m,n (56)

or

Ḡ−1/2G−1/2Um,−n = B−1
m,n∂̄∂O ′

m,n mod Q. (57)

This means that the integrand in (50) is the full derivative modulo BRST exact terms.
Apparently [26], the particular cases described above correspond to the following general

structure of the space of physical states in SLG. In each picture, there is only one cohomology if
the representation in the matter sector is not degenerate. In the degenerate case, two additional
physical fields arise. For example, in the picture q = 0, there are fields W̃m,n and Om,n and
the third type of cohomology of the ghost number Ng = 2, which we do not discuss here.

6. Ground ring operator products

The discrete states Om,n act modulo exact forms in the space of physical states of the given
type (in our case either Wa or W̃a) because their action does not change the ghost number and
all nontrivial classes in the given pictures are generically exhausted by these composite fields
with different a. Moreover, because of the fusion restrictions of the degenerate fields 	m,n

and Vm,n in the OPE, the general structure of the operator products is

Om,nW(a) =
∑

{r,s}∈(m,n)

A(m,n)
r,s W(a + λr,s),

Om,nW̃ (a) =
∑

{r,s}∈(m,n)

Ã(m,n)
r,s W̃ (a + λr,s),

(58)

where the set of integers (m, n) is defined by the restrictions on the OPE of the degenerate
fields in both the matter and the Liouville sectors. To evaluate the numerical coefficients A(m,n)

r,s

4 Naively, this would lead to trivial results for the correlation functions with any other physical field. But we see
below that because of the transformation properties of the BRST current, this does not happen.

9



J. Phys. A: Math. Theor. 42 (2009) 304003 A Belavin and V Belavin

and Ã(m,n)
r,s , it is useful to calculate explicitly in the simplest nontrivial case (m, n) = (1, 3).

In this case, a1,3 = −b. Equation (53) defines Hmn explicitly. For H1,3, we find

H1,3 = LM
−1 − LL

−1 − GM
−1/2G

L
−1/2 + b2β−3/2γ1/2 + 2b2b−2c1 − b2

(
GM

−1/2 + GL
−1/2

)
β−3/2c1

(59)

and the corresponding field

O13(x) = 	′
13(x)V13(x) − 	13(x)V ′

13(x) − �13(x)�13(x) + [b2:β(x)γ (x):

+ 2b2:b(x)c(x):]	13(x)V13(x) − b2β(x)c(x)�13(x)V13(z)

− b2β(x)c(x)	13(x)�13(z). (60)

Here, we introduce the special notation for the top components of the primary supermultiplets
in the Liouville5 and matter sectors

�a = ḠL
−1/2G

L
1/2Va, �a = ḠM

−1/2G
M
1/2	a. (61)

We first consider the operator product O13(x)Wa(0). The special OPEs that we need in this
case are those of the degenerate field V13 and �13 in the Liouville sector (see [10, 11] for
details):

V1,3(x)Va(0) = (xx̄)abCL
+ (a)[Va−b]ee

+ (xx̄)1+b2
C̃L

0 (a)[Va]oo + (xx̄)1−ba+b2
CL

−(a)[Va+b]ee,

�1,3(x)Va(0) = (xx̄)ab+1/2CL
+ (a)[Va−b]oo

+ (xx̄)b
2
C̃L

0 (a)[Va]ee + (xx̄)1−ba+b2
CL

−(a)[Va+b]oo,

(62)

where C−(a), C̃0(a) and C+(a) are ‘special’ structure constants6

CL
+ (a) = 1,

C̃L
0 (a) = 2π iμγ (ab − b2)

γ (−b2)γ (ab)
,

CL
−(a) = π2μ2b4γ 2

(
1

2
+

b2

2

)
γ

(
−1

2
− b2

2
+ ab

)
γ

(
1

2
− b2

2
− ab

)
.

(63)

The analogous operator products in the matter sector can be easily reconstructed by starting
from (62), renormalizing the fields and analytically continuing, as discussed in section 3:

	13(x)	a(0) = (xx̄)1−ab−b2
CM

− (a)[	a−b]ee

+ (xx̄)1−b2
C̃M

0 (a)[	a]oo + (xx̄)abCM
+ (a)[	a+b]ee,

�13(x)	a(0) = (xx̄)1−ab−b2
CM

− (a)[	a−b]oo

+ (xx̄)−b2
C̃M

0 (a)[	a]ee + (xx̄)abCM
+ (a)[	a+b]oo

(64)

and

CM
− (a) =

(
γ (1/2 + b2/2)γ (ab − 1/2 + b2/2)

γ (−1/2 + 3b2/2)γ (ab + 1/2 − b2/2)

)1/2

,

C̃M
0 (a) = ib−2γ

(
bQ

2

) (
γ (1 − b2)γ (b2/2 − 1/2)

γ (b2 − 1)γ (3b2/2 − 1/2)

)1/2
γ (ab + b2)

γ (ab)
,

CM
+ (a) =

(
γ (1/2 + b2/2)γ (ab − 1/2 + 3b2/2)

γ (−1/2 + 3b2/2)γ (ab + 1/2 + b2/2)

)1/2

.

(65)

5 In the Liouville sector, our notation for the top component of the primary supermultiplet differs from the notation
in [10, 11].
6 Again, here we use the notation for the Liouville special structure constants differently (which seems more natural)
than in [10, 11].
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It is straightforward to verify that we are left with

O13(x)Wa(0) = A
(1,3)
0,−2Wa−b(0) + A

(1,3)
0,0 Wa(0) + A

(1,3)
0,2 Wa+b(0) (66)

in the operator product (see appendix A). The cancellation of the ‘unphysical’ terms in the
operator product can be verified by explicitly calculating at least at the primary field level.
The coefficients can be written in the special factored form:

A
(1,3)
0,−2 = (1 − 2ab + b2)2CM

− (a − b)CL
+ (a) = X

N(a)

N(a − b)
,

A
(1,3)
0,0 = C̃M

0 (a − b)C̃L
0 (a) = X

N(a)

N(a)
,

A
(1,3)
0,2 = (1 − 2ab + b2)2CM

+ (a − b)CL
−(a) = X

N(a)

N(a + b)
,

(67)

where

X = 4b2

[
πμγ

(
1

2
+

b2

2

)][
γ (1/2 + b2/2)

γ (3b2/2 − 1/2)

]1/2

(68)

and

N(a) =
[
πμγ

(
1

2
+

b2

2

)]−a/b[
γ

(
ab − b2

2
+

1

2

)
γ

(
a

b
− b−2

2
+

1

2

)]1/2

. (69)

A similar calculation can be performed for the operator product Om,nW̃ . It turns out that the
result can be generalized for an arbitrary pair (m, n) as

A(m,n)
r,s = Ã(m,n)

r,s = KBm,nN(am,−n)
N(a)

N(a + λr,s)
, (70)

and the coefficient K is universal, i.e., is independent of (m, n):

K = 1

2b

[
γ (1/2 + b2/2)

γ (3/2 − b−2/2)

]1/2

. (71)

Expression (58) reduces to

Om,n

W(a)

N(a)
= KBm,nN(am,−n)

∑
{r,s}∈(m,n)

W(a + λr,s)

N(a + λr,s)
,

Om,n

W̃ (a)

N(a)
= KBm,nN(am,−n)

∑
{r,s}∈(m,n)

W̃ (a + λr,s)

N(a + λr,s)
.

(72)

7. Correlation numbers

The requirement that the ghost current be conserved leads to the general form of the n-point
correlation numbers on the sphere for the three basic types of observables introduced in the
previous section:

〈〈a1a2 · · · an〉〉SLG =
〈
Wa1(z1)Wa2(z2)W̃a3(z3)

n∏
i=4

∫
Ḡ−1/2G−1/2Uai

(zi) d2zi

〉
. (73)

The simplest case is the three-point correlation number, where there is no integral over the
moduli space and the result is factored into a product of the matter, Liouville and ghost
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three-point functions. Using (47) and (49), we can derive

〈〈a1a2a3〉〉SLG = [〈Va1Va2Va3〉〈	a1−b	a2−b�a3−b〉
+ 〈Va1Va2�a3〉〈	a1−b	a2−b	a3−b〉]〈c1c2c3〉〈δ(γ1)δ(γ2)〉

= CM(a1 − b, a2 − b, a3 − b)C̃L(a1, a2, a3)

+ C̃M(a1 − b, a2 − b, a3 − b)CL(a1, a2, a3) (74)

or explicitly (see appendix E)

〈〈a1a2a3〉〉SLG = 

3∏
i=1

N(ai), (75)

where

 = i

[
πμγ

(
1

2
+

b2

2

)]Q/b[
γ (b2/2 + 1/2)γ (b−2/2 − 1/2)

b2

]1/2

, (76)

and the normalization factor N(a) is defined in (69).
The partition sum and the two-point numbers can be obtained simply from the expression

for the three-point function. The next step is to obtain the four-point numbers. The expression
is more complicated: it involves integration over moduli. The naive and rather numerical way
to calculate it is based on the conformal block decomposition of the four-point correlation
functions in both the Liouville and the matter sectors (see [10, 27, 28]). But this approach is not
available at the moment (we intend to investigate it later), and this straightforward computation
is moreover unable to provide the exact results. Here, we use another approach to evaluate
the four-point integral. Relation (57) allows reducing the moduli integral in expression (73)
for the correlation numbers to the boundary integrals if one of the parameters is degenerate,
ai = am,−n. In particular, the four-point correlation number becomes

〈〈am,−na1a2a3〉〉SLG = B−1
m,n

∫
∂�

∂〈O ′
m,n(x)Wa1(x1)Wa2(x2)W̃a3(x3)〉dx

2i
, (77)

where the boundary consists of three circles, ∂� = ∑3
i=1 ∂�i , around the points x1, x2 and

x3 (integrated clockwise) and a large circle ∂�∞ near infinity (integrated counterclockwise),
which arises because the operator O ′

m,n is not exactly a scalar. Taking the distributive character
of the action of the BRST charge into account, we can shift it after the insertion of the other
physical fields, which means that Q-exact terms in (57) do not contribute to (77). To evaluate
the boundary terms, we must better understand the short-range behavior of the operator
products: O ′

m,n(x)W(0) and O ′
m,n(x)W̃ (0). The following section is devoted to this subject.

8. Boundary terms

The boundary integrals in (77) are controlled by the operator products of the logarithmic fields
O ′

m,n with the basic physical states W(ai) and W̃ (ai). The derivation of these OPEs on the
basis of the corresponding ground ring operator products is almost the same as in the bosonic
case [29, 30]. The only differences are the different definition of the logarithmic field V ′(a)

and the different relation between the conformal dimension and the parameter b. A closer
consideration shows that these two differences compensate each other. Hence, the necessary
logarithmic contributions to the OPE are

O ′
m,n

W(a)

N(a)
= log(xx̄)KBm,nN(am,−n)

∑
{r,s}∈(m,n)

q(m,n)
r,s (a)

W(a + λr,s)

N(a + λr,s)
,

O ′
m,n

W̃ (a)

N(a)
= log(xx̄)KBm,nN(am,−n)

∑
{r,s}∈(m,n)

q(m,n)
r,s (a)

W̃ (a + λr,s)

N(a + λr,s)
,

(78)
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where

q(m,n)
r,s (a) = |a − λr,s − Q/2|Re − λm,n (79)

and

|x|Re =
{
x if Re x > 0,

−x if Re x < 0.
(80)

The contribution at infinity arises as follows. The logarithmic field is not a scalar; under
conformal coordinate transformations x → y, it acquires an inhomogeneous part:

O ′
m,n(y) = O ′

m,n(x) − 2�′
m,nOm,n(x)log|yx |, (81)

where

�′
m,n = d

da
�(L)

a

∣∣
a=am,n

= λm,n. (82)

Transformation (81) leads to the behavior of the correlation function with O ′
m,n(x) as x → ∞:

〈O ′
m,n(x)Wa1(x1)Wa2(x2)W̃a3(x3)〉 ∼ −2�′

m,n log(xx̄)〈Om,nWa1Wa2W̃a3〉. (83)

Therefore, the contribution of the boundary term ∂�∞ is evaluated as
1

2i

∫
∂�∞

∂〈O ′
m,n(x)Wa1(x1)Wa2(x2)W̃a3(x3)〉dx = −2πλm,n〈Om,nWa1Wa2W̃a3〉. (84)

9. Four-point correlation number

Summing boundary contributions (78) and curvature term (84), we find the expression for the
four-point correlation number

〈〈am,−na1a2a3〉〉SLG = πKN(am,−n)

⎧⎨
⎩

3∑
i=1

∑
r,s∈(m,n)

q(m,n)
r,s (ai) + 2mnλm,n

⎫⎬
⎭ 〈〈a1a2a3〉〉, (85)

where the fusion set (m, n) = {1−m : 2 : m−1, 1−n : 2 : n−1} and the second term is just
the result of the curvature contribution when we move O ′

m,n close to one of the other fields.
The normalization factor N(am,−n) is defined by (69), and the three-point correlation number
〈〈a1a2a3〉〉 is given by (75). It seems tempting to simplify these relations by introducing the
renormalized fields Wa, W̃a and Ua as

Wa = Wa

N(a)
,

W̃a = W̃a

N(a)
,

Ua = Ua

N(a)
.

(86)

Expression (85) reduces to
1



∫
〈Ḡ−1/2G−1/2Um,−n(x)Wa1(x1)Wa2(x2)W̃a3(x3)〉 d2x

= πK

{ 3∑
i=1

∑
r,s∈(m,n)

q(m,n)
r,s (ai) + 2mnλm,n

}
, (87)

where  is defined in (76). Formulae (85) and (87) for the four-point correlation numbers
in the minimal super Liouville gravity, together with the explicit expression for the structure
constants (75), are the main results of the presented study.
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Appendix A. Ghost number balance on the sphere

Conservation of the fermionic ghost current provides the relation∮
C

du

2π i
〈J bc(u)X(z1, . . . , zn)〉 = (Nc − Nb)〈X(z1, . . . , zn)〉, (A.1)

where X(z1, . . . , zn) denotes a set of physical fields, the contour C is any contour encircling
all insertions of the fields, and Nc and Nb are the total ghost numbers related to the composite
operator X. On the other hand, we can deform the contour, moving it to infinity. For this, we
need to know the transformation law for J bc. First, we define the infinitesimal version. Based
on the canonical operator products

T (u)b(z) = 2

(u − z)2
b(z) +

1

u − z
b′(z),

T (u)c(z) = −1

(u − z)2
c(z) +

1

u − z
c′(z),

(A.2)

correspond to the following ghost part of the stress–energy tensor

T bc(u) = :c(u)b(u): + 2:∂c(u)b(u):, (A.3)

which defines (see (24)) the singular part of the operator product,

T bc(u)J bc(z) = − 3

(u − z)3
+

J bc(z)

(u − z)2
+

∂J bc(z)

(u − z)
. (A.4)

This, together with the definition

δε =
∮

ε(u)T (u)
du

2π i
, (A.5)

leads to

δεJ
bc(z) = −3

2
ε′′(z) + ε′(z)J bc(z) + ε

∂J bc(z)

∂z
. (A.6)

This infinitesimal form allows reconstructing the finite version of the transformation

J bc(z) → J̃ bc(z) = dw

dz
J bc(w(z)) − 3

2

w′′

w′ as z → w(z). (A.7)

Also taking the transformation properties of the physical fields into account, we now make the
inversion for the correlation function in (A.1):∮

C

du

2π i
〈J bc(u)X〉=

∮
C∞

du

2π i

[
− 1

u2
〈J bc(1/u)X(1/z1, . . . , 1/zn)〉 +

3

u
〈X(1/z1, . . . , 1/zn)〉

]

= 3〈X(1/z1, . . . , 1/zn)〉, (A.8)
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where the first term vanishes because 1/u = 0 is the regular point of the correlation function.
Again performing the inversion for the correlator 〈X(1/z1, . . . , 1/zn)〉, we obtain

(Nc − Nb − 3)〈X(z1, . . . , zn)〉 = 0, (A.9)

which means that either Nc − Nb = 3 or the corresponding correlator is equal to zero.
The consideration for the bosonic ghost current J βγ (z) literally follows that for the

fermionic ghost current. We consider the integral∮
C

du

2π i
〈J βγ (u)X(z1, . . . , zn)〉 = (−Nδ(γ ) + Nγ + Nδ(β) − Nβ)〈X(z1, . . . , zn)〉, (A.10)

T βγ (u) = −1

2
:β ′(u)γ (u): − 3

2
:γ ′(u)β(u):, (A.11)

and

T βγ (u)J βγ (z) = 2

(u − z)3
+

J βγ (z)

(u − z)2
+

∂J βγ (z)

(u − z)
. (A.12)

Hence, the infinitesimal form of the transformation is

δεJ
βγ (z) = ε′′(z) + ε′(z)J βγ (z) + ε

∂J βγ (z)

∂z
, (A.13)

and the finite version is

J βγ (z) → J̃ βγ (z) = dw

dz
J βγ (w(z)) +

w′′

w′ as z → w(z). (A.14)

The only difference comes from the different coefficients in the transformation law. We
conclude that

(−Nδ(γ ) + Nγ + Nδ(β) − Nβ + 2)〈X(z1, . . . , zn)〉 = 0. (A.15)

Appendix B. BRST properties of the field W̃a

Here, we prove that W̃a is closed. We must verify that

QW̃a = Q
(
GM+L

−1/2 + 1
2G

g

−1/2

)|a〉0 = Q
(
GM+L

−1/2 − b−1γ1/2
)|a〉0 = 0, (B.1)

where the second equality follows from the mode expansion of G
g

1/2. In accordance with
definition (19), we split the operator Q into three parts Q1,Q2 and Q3. Then

Q1G
M+L
−1/2|a〉0 = 1

2c0G−1/2|a〉0,

Q2G
M+L
−1/2|a〉0 = (

γ1/2L−1 + γ−1/2 + γ 2
1/2G−1/2b−1 − 1

4c0G−1/2
) |a〉0,

Q3G
M+L
−1/2|a〉0 = − 1

4c0G−1/2|a〉0.

(B.2)

The sum of these contributions is

QGM+L
−1/2|a〉0 = (γ1/2L−1 + γ−1/2 + γ 2

1/2G−1/2b−1)|a〉0. (B.3)

Similarly, the action of the operator Q on the second term in W̃a is

Q1b−1γ1/2|a〉0 = (
γ1/2L−1 + 1

2γ−1/2 + 3
4c0b−1γ1/2

) |a〉0,

Q2b−1γ1/2|a〉0 = (
γ 2

1/2G−1/2b−1 + 1
2γ−1/2 − 1

2c0b−1γ1/2
) |a〉0,

Q3b−1γ1/2|a〉0 = − 1
4c0b−1γ1/2|a〉0.

(B.4)

Again summing these contributions, we obtain

Qb−1γ1/2|a〉0 = (
γ1/2L−1 + γ−1/2 + γ 2

1/2G−1/2b−1
)|a〉0. (B.5)

This coincides with the action of the BRST charge on the first term (B.3). We have thus
verified that fields W̃a form the cohomology class.
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Appendix C. The basic relation

We first consider the action of the holomorphic BRST charge on the discrete state Om,n.
We assume that we are dealing with the Verma module in the Liouville sector (i.e., the
degenerate representation is not factored with respect to the singular vector submodule). From
dimensional arguments and also taking the ghost charge of the operator Q into account, we
can conclude that the most general form of this action is

QOm,n = (
xGM

−1/2 + yGL
−1/2 + zG

g
−1/2

)
	m,nD

L
m,nVm,nc. (C.1)

Indeed, decoupling the singular vector then provides that Om,n is BRST exact. The explicit
calculation gives x = y = 1 and z = −1/2. Combining with the action of the antiholomorphic
Q̄, we obtain basic relation (53). We now consider the ‘quasi’-discrete state

Oa = H̄m,nHm,n	m,nVa, (C.2)

for which the parameter a is in the vicinity of the degenerate value or, more precisely, the
difference ε = a − am,n is small. It is obvious from the analyticity that

Q̄QOa = [J̄ m,n + εK̄m,n][Jm,n + εKm,n]	m,nVa, (C.3)

where Jm,n is defined in (52), and Km,n is an operator built from the super Virasoro generators
of all three sectors. Differentiating (C.3) with respect to the parameter a gives

Q̄QO ′
a = J̄ m,nJm,n	m,nV

′
m,n

= (
ḠM+L

−1/2 − 1
2Ḡ

g
−1/2

)(
GM+L

−1/2 − 1
2G

g
−1/2

)
	m,nD̄

L
m,nD

L
m,nV

′
m,nc̄c (C.4)

because the term,

(K̄m,nJm,n + Km,nJ̄ m,n)	m,nVm,n, (C.5)

vanishes as a result of the action of the operators DL
m,n and D̄L

m,n inside Jm,n and J̄ m,n on Vm,n.
Relation (C.4) combined with higher equations of motion (14) results in (54).

Appendix D. OPE O1,3Wa

We separately calculate the contribution of each term in (60) to the operator product
O1,3(x)Wa(0). The first term gives (we write only the holomorphic part explicitly)

	′
13(x)V13(x)	a−b(0)Va(0)c(0)δ(γ (0))

= (
x1−abCM

+ (a − b)	a−2b(0) + x1−b2
C̃M

0 (a − b)�a−b(0) + xab−b2
CM

− (a − b)	a(0)
)′

× (
xabCL

−(a)Va−b(0) + x1+b2
C̃L

0 (a)�a−b(0) + x1−ab+b2
CL

+ (a)Va+b(0)
)
C(0)δ(γ (0))

= (1 − ab)C(M)
+ (a − b)C−(a)Wa−b(0) + (ab − b2)C

(M)
− (a − b)C+(a)Wa+b(0). (D.1)

The contribution of the second term in (60) is

	13(x)V ′
13(x)	a−b(0)Va(0)C(0)δ(γ (0))

= abCM
+ (a − b)CL

−(a)Wa−b(0) + (1 − ab + b2)CM
− (a − b)CL

+ (a)Wa+b(0).

(D.2)

The third term contributes

�13(x)�13(x)	a−b(0)Va(0)c(0)δ(γ (0)) = C̃M
0 (a − b)C̃L

0 (a)Wa(0). (D.3)

Using the basic operator product in the ghost sector, we obtain

β(x)δ(γ (0)) = δ′(γ (0))

x
(D.4)
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and

γ (x)δ′(γ (0)) ∼ γ (0)δ′(γ (0)) ∼ −δ(γ (0)). (D.5)

Hence, the fourth term contributes

	13(x)	a−b(0)V13(x)Va(0)β(x)γ (x)c(0)δ(γ (0))

= −CM
+ (a − b)CL

−(a)Wa−b(0) − CM
− (a − b)CL

+ (a)Wa+b(0). (D.6)

The last term contributes

	13(x)	a−b(0)V13(x)Va(0)b(x)c(x)c(0)δ(γ (0))

= CM
+ (a − b)CL

−(a)Wa−b(0) + CM
− (a − b)CL

+ (a)Wa+b(0). (D.7)

Combining all together and also taking the antiholomorphic part into account, we obtain (66).

Appendix E. Three-point correlation number in SLG

Here, we explicitly derive three-point number (74),

〈〈a1a2a3〉〉SLG = CSLG
I (a1, a2, a3) + CSLG

II (a1, a2, a3), (E.1)

where
CSLG

I (a1, a2, a3) = CL(a1, a2, a3)C̃
M(a1 − b, a2 − b, a3 − b),

CSLG
II (a1, a2, a3) = C̃L(a1, a2, a3)C

M(a1 − b, a2 − b, a3 − b).
(E.2)

Instead of treating the two sectors separately, we find it instructive to solve the shift relations
for the SLG structure constants. Below, we show that
CSLG

I,II (a1 + b, a2, a3)

CSLG
I,II (a1 − b, a2, a3)

= [πμb2γ (1/2 + b2/2)]−2(1/2 − ba + b2/2)(1/2 − ba − b2/2)

×
[

γ (ab + b2/2 + 1/2)

γ (ab − 3b2/2 + 1/2)

]1/2

. (E.3)

These shift relations give

〈〈a1a2a3〉〉SLG = const
3∏

i=1

N(ai), (E.4)

where N(a) is defined in equation (69). To define the constant, we take ai = b. The
corresponding structure constants in the matter sector are CM(0, 0, 0) = 1 and C̃M(0, 0, 0) =
0. Also having in mind that CL(b, b, b) can be defined from (9) and is expressed just in
terms of the gamma functions, we conclude that const = (b) (see equation (76)). The
shift relations for SLG structure constants (E.3) are combined from the corresponding shift
relations in the Liouville and the matter sectors,

CSLG
I (a1 + b, a2, a3)

CSLG
I (a1 − b, a2, a3)

= CL(a1 + b, a2, a3)

CL(a1 − b, a2, a3)

C̃M(a1, a2 − b, a3 − b)

C̃M(a1 − 2b, a2 − b, a3 − b)
, (E.5)

which follows from the bootstrap relations and the monodromy properties of the differential
equation corresponding to the decoupling of the singular vector. For the sake of completeness,
we recapitulate the two main formulae concerning the Liouville sector in [10, 11]. The first is
CL

−(a1)C
L
a1+b,a2,a3

CL
+ (a1)C

L
a1−b,a2,a3

= −γ (ba1)γ (ba1 − b2)γ 2(1/2 − b2/2 + ba1)

(1/2 − ba1 + b2/2)2

× γ (1/2 + ba2+3−1/2)γ (ba2+3−1/2 − b2/2)

γ (1/2 + ba1+3−2/2)γ (ba1+3−2/2 − b2/2)

× γ (3/2 − ba1+2+3/2 + b2)γ (1 − ba1+2+3/2 + b2/2)

γ (1/2 + ba1+2−3/2)γ (ba1+2−3/2 − b2/2)
, (E.6)
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and the second is
CL

−(a1)C̃
L(a1 + b, a2, a3)

CL
+ (a1)C̃L(a1 − b, a2, a3)

= γ (ba1)γ (ba1 − b2)

γ (ba1+2−3/2)γ (ba1−2+3/2)

× γ (a1b − b2/2 + 1/2)γ (a1b − b2/2 − 1/2)

γ (ba1+2+3/2 − b2)γ
(
(1 + ba1−2+3 − b2)/2

)

× γ (ba−1+2+3/2)γ
(
(1 + ba−1+2+3 − b2)/2

)
γ
(
(−1 + ba1+2+3 − b2)/2

)
γ
(
(1 + ba1+2−3 − b2)/2

)
= S(a1, a2, a3). (E.7)

Taking (63) into account, we derive

CL(a1 + b, a2, a3)

CL(a1 − b, a2, a3)
=

[
πμb2γ

(
Qb

2

)]−2
γ (ba1)γ (ba1 − b2)

γ (1/2 + ba1+3−2/2)

× γ (a1b + b2/2 + 1/2)γ (a1b − b2/2 + 1/2)

γ (ba1+3−2/2 − b2/2)

× γ (1 − ba1+2+3/2 + b2/2)γ (3/2 − ba1+2+3/2 + b2)

γ (1/2 + ba1+2−3/2)

× γ (1/2 + ba2+3−1/2)γ (ba2+3−1/2 − b2/2)

γ (ba1+2−3/2 − b2/2)
(E.8)

from (E.6). The shift relations for the structure constants in the matter sector can be derived
in two steps starting from those in the Liouville sector. First, we change the normalization
in accordance with the standard requirement 〈	a	a〉 = 1 in the matter sector. In this
normalization, the special structure constants coincide with the three-point functions (to
distinguish these structure constants from the original ones, we do not label them with the
superscript L):

C−(a) = C(−b, a, a + b), C+(a) = C(−b, a, a − b). (E.9)

Setting a2 = a1 and a3 = −b in (E.6), we obtain[
C−(a1)

C+(a1)

]2

= γ (a1b − b2/2 + 1/2)γ (−a1b + 3b2/2 + 3/2)

γ (−a1b + b2/2 + 3/2)γ (a1b + b2/2 + 1/2)
= M(a1). (E.10)

Combining this relation with (E.7), we derive

C̃(a1 + b, a2, a3)

C̃(a1 − b, a2, a3)
= S(a1, a2, a3)M

−1/2(a1). (E.11)

The second step now is to replace ai → i(ai − b) and b → −ib,

C̃M(a1, a2 − b, a3 − b)

C̃M(a1 − 2b, a2 − b, a3 − b)
= M1/2(i(a1 − b);−ib)

S(i(a1 − b), i(a2 − b), i(a3 − b);−ib)

= γ (a1b − b2/2 + 1/2)γ (−a1b − b2/2 + 3/2)

γ (−a1b + b2/2 + 3/2)γ (a1b − 3b2/2 + 1/2)
[γ (ba1)]

−1/2

× [γ (ba1 − b2)γ (a1b + b2/2 + 1/2)γ (a1b − b2/2 + 1/2)]−1/2

× γ (1/2 + ba1+3−2/2)γ (ba1+3−2/2 − b2/2)

γ (1 − ba1+2+3/2 + b2/2)γ (3/2 − ba1+2+3/2 + b2)

× γ (1/2 + ba1+2−3/2)γ (ba1+2−3/2 − b2/2)

γ (1/2 + ba2+3−1/2)γ (ba2+3−1/2 − b2/2)
. (E.12)

We note that the dependence on the gamma functions containing the different combinations
of ai in (E.8) and (E.12) exactly cancels, and we obtain (E.3).
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